高中二年级人教版数学必学四要点是智学网为大伙收拾的,要点就是学习的重点。学会要点能够帮助大伙更高效学习。
1.高中二年级人教版数学必学四要点 篇一
柱、锥、台、球的结构特点
棱柱:
几何特点:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.
棱锥
几何特点:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.
棱台:
几何特点:上下底面是一样的平行多边形侧面是梯形侧棱交于原棱锥的顶点
圆柱:概念:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
几何特点:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形.
圆锥:概念:以直角三角形的一条直角边为旋转轴,旋转一周所成
几何特点:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形.
圆台:概念:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
几何特点:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形.
球体:概念:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特点:球的截面是圆;球面上任意一点到球心的距离等于半径.
2.高中二年级人教版数学必学四要点 篇二
数列
数列的定义和简单表示法
①知道数列的定义和几种简单的表示办法.
②知道数列是自变量为正整数的一类函数.
等差数列、等比数列
①理解等差数列、等比数列的定义.
②学会等差数列、等比数列的通项公式与前项和公式.
③能在具体的问题情境中,辨别数列的等差关系或等比关系,并可以用有关常识解决相应的问题.
④知道等差数列与一次函数、等比数列与指数函数的关系.
3.高中二年级人教版数学必学四要点 篇三
向量的计算
1.加法
交换律:a+b=b+a;
结合律:+c=a+。
2.减法
假如a、b是互为相反的向量,那样a=-b,b=-a,a+b=0.0的反向量为0
加减变换律:a+=a-b
3.数目积
概念:已知两个非零向量a,b。作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π
向量的数目积的运算律
a·b=b·a
·b=λ
·c=a·c+b·c
向量的数目积的性质
a·a=|a|的平方。
a⊥b〈=〉a·b=0。
|a·b|≤|a|·|b|。
4.高中二年级人教版数学必学四要点 篇四
空间角问题
(1)直线与直线所成的角
①两平行直线所成的角:规定为0。
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线a,b,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。
(2)直线和平面所成的角
①平面的平行线与平面所成的角:规定为0。
②平面的垂线与平面所成的角:规定为90。
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
求斜线与平面所成角的思路像求异面直线所成角:“一作,二证,三计算”。
5.高中二年级人教版数学必学四要点 篇五
空间中的平行问题
直线与平面平行的断定及其性质
线面平行的断定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.
线线平行线面平行
线面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,
那样这条直线和交线平行.线面平行线线平行
平面与平面平行的断定及其性质
两个平面平行的断定定理
假如一个平面内的两条相交直线都平行于另一个平面,那样这两个平面平行
,
假如在两个平面内,各有两组相交直线对应平行,那样这两个平面平行.
,
垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
假如两个平面平行,那样某一个平面内的直线与另一个平面平行.
假如两个平行平面都和第三个平面相交,那样它们的交线平行.
6.高中二年级人教版数学必学四要点 篇六
圆与圆的地方关系:
两圆的地方关系常通过两圆半径的和,与圆心距之间的大小比较来确定.
当时两圆外离,此时有公切线四条;
当时两圆外切,连心线过切点,有姥爷切线两条,内公切线一条;
当时两圆相交,连心线垂直平分公共弦,有两条姥爷切线;
当时,两圆内切,连心线经过切点,只有一条公切线;
当时,两圆内含;当时,为同心圆.
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
7.高中二年级人教版数学必学四要点 篇七
设α为任意角,终边相同的角的同一三角函数的值相等:
sin=sinα
cosplay=cosplayα
tan=tanα
cot=cotα
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin=-sinα
cosplay=-cosplayα
tan=tanα
cot=cotα
任意角α与-α的三角函数值之间的关系:
sin=-sinα
cosplay=cosplayα
tan=-tanα
cot=-cotα
借助公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin=sinα
cosplay=-cosplayα
tan=-tanα
cot=-cotα
借助公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin=-sinα
cosplay=cosplayα
tan=-tanα
cot=-cotα
8.高中二年级人教版数学必学四要点 篇八
函数的值域取决于概念域和对应法则,不论使用何种办法求函数值域都应先考虑其概念域,求函数值域常用办法如下:
直接法:亦称察看法,对于结构较为简单的函数,可由函数的分析式应用不等式的性质,直接察看得出函数的值域.
换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数分析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.
反函数法:借助函数f与其反函数f-1的概念域和值域间的关系,通过求反函数的概念域而得到原函数的值域,形如的函数值域可使用此法求得.
配办法:对于二次函数或二次函数有关的函数的值域问题可考虑用配办法.
不等式法求值域:借助基本不等式a+b≥[a,b∈]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等方法.
辨别式法:把y=f变形为关于x的一元二次方程,借助“△≥0”求值域.其题型特点是分析式中含有根式或分式.
借助函数的单调性求值域:当能确定函数在其概念域上的单调性,可使用单调性法求出函数的值域.
数形结合法求函数的值域:借助函数所表示的几何意义,借用于几何办法或图象,求出函数的值域,即以数形结合求函数的值域.
9.高中二年级人教版数学必学四要点 篇九
1.向量可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。
2.规定若线段AB的端点A为起点,B为终点,则线段就具备了从起点A到终点B的方向和长度。具备方向和长度的线段叫做有向线段。
3.向量的模:向量的大小,也就是向量的长度。向量a的模记作|a|。
注:向量的模是非负实数,是可以比较大小的。由于方向不可以比较大小,所以向量也就不可以比较大小。对于向量来讲“大于”和“小于”的定义是没意义的。
4.单位向量:长度为一个单位的向量,叫做单位向量.与向量a同向,且长度为单位1的向量,叫做a方向上的单位向量,记作a0。
5.长度为0的向量叫做零向量,记作0。零向量的始点和终点重合,所以零向量没确定的方向,或说零向量的方向是任意的。
10.高中二年级人教版数学必学四要点 篇十
1、科学记数法:把一个数字写成的形式的`记数办法。
2、统计图:形象地表示采集到的数据的图。
3、扇形统计图:用圆和扇形来表示总体和部分的关系,扇形大小反映部分占总体的百分比的大小;在扇形统计图中,每一个部分占总体的百分比等于该部分对应的扇形圆心角与360°的比。
4、条形统计图:了解地表示出每一个项目的具体数目。
5、折线统计图:了解地反映事物的变化状况。
6、确定事件包含:一定会发生的势必事件和肯定不会发生的不可能事件。
7、不确定事件:可能发生也会不发生的事件;不确定事件发生的可能性大小不同;不确定。
8、事件的概率:可用事件结果除以所以可能结果求得理论概率。
9、有效数字:对于一个近似数,从左侧第一个不是0的数字起,到精准到的数位为止的数字。
10、游戏双方公平:双方获胜的可能性相同。
11、算数平均数:简称“平均数”,最常用,受极端值得影响较大;加权平均数12、中位数:数据按大小排列,处于中间地方的数,计算简单,受极端值得影响较小。
13、众数:一组数据中出现次数最多的数据,受极端值得影响较小,跟其他数据关系不大。
14、平均数、众数、中位数都是数据的代表,刻画了一组数据的“平均水平”。
15、普查:为了肯定目的对考察对象进行全方位调查;考察对象全体叫总体,每一个考察对象叫个体。
16、抽样调查:从总体中抽取部分个体进行调查;从总体中抽出的一部分个体叫样本。
17、随机调查:按机会均等的原则进行调查,总体中每一个个体被调查的概率相同。
18、频数:每次对象出现的次数。
19、频率:每次对象出现的次数与总次数的比值。
20、级差:一组数据中数据与最小数据的差,刻画数据的离散程度。
21、方差:每个数据与平均数之差的平方的平均数,刻画数据的离散程度。
21、标准方差:方差的算数平方根刻画数据的离散程度。
23、一组数据的级差、方差、标准方差越小,这组数据就越稳定。
24、借助树状图或表格便捷求出某事件发生的概率。
25、两个对比图像中,坐标轴上同一单位长度表示的意义一致,纵坐标从0开始画。